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Comparison of Simulated Pesticide Concentrations in Surface
Drinking Water with Monitoring Data: Explanations for Observed
Differences and Proposals for a New Regulatory Modeling Approach
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ABSTRACT: A primary component to human health risk assessments required by the U.S. Environmental Protection Agency in
the registration of pesticides is an estimation of concentrations in surface drinking water predicted by environmental models. The
assumptions used in the current regulatory modeling approach are designed to be “conservative”, resulting in higher predicted
pesticide concentrations than would actually occur in the environment. This paper compiles previously reported modeling and
monitoring comparisons and shows that current regulatory modeling methods result in predictions that universally exceed
observed concentrations from the upper end of their distributions. In 50% of the modeling/monitoring comparisons, model
predictions were more than 229 times greater than the observations, while, in 25% of the comparisons, model predictions were
more than 4500 times greater than the observations. The causes for these overpredictions are identified, followed by suggestions
for alternative modeling approaches that would result in predictions of pesticide concentrations closer to those observed.
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B INTRODUCTION

Regulation of agricultural pesticides use in the Unites States is
required to be protective of both human health and the
environment. The U.S. Environmental Protection Agency
(EPA) assesses the risk of a particalar pesticide use to human
health from all nonoccupational sources by determining an
estimated drinking water concentration (EDWC) of the
pesticide, generally using simulation models, and combining
this with other possible routes of exposure (food and residential
sources) for comparison against human health effects metrics
(the pesticide toxicity). Occupational exposure is assessed
under a separate paradigm. The aggregate exposure is
compared with effects data so that the risk manager may
make an informed decision based on the risk characterization.
The EDWC is often the determining factor in a risk assessment,
and the accurate estimations of exposure are worthy of
evaluation and improvements as technology and available
data improve. EDWCs are calculated for both groundwater and
surface water, with the higher of the two values representing the
exposure level in the risk assessment. While challenges exist in
the determination of groundwater and surface water EDWCs,
this paper will focus on surface water. Surface water EDWCs
can be determined from direct monitoring of raw and finished
water in surface water supplies (for already registered
products), modeling the pesticide fate and transport in surface
drinking water using established regulatory tools or refined
tools, or a combination of the two approaches. While extensive
monitoring of pesticide residues in drinking water systems has
occurred in the US over the past few decades, the need to
calculate EDWCs for certain types of water systems and
pesticides lacking more extensive monitoring records (espe-
cially limited and new use products) will continue. For this
reason, modeling of pesticide EDWCs is the most common
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approach taken when conducting risk assessments; however,
the usefulness of existing monitoring programs should not be
ignored in their ability to validate the regulatory process and
modeling predictions made by the EPA.

Current Regulatory Modeling Approach. In pesticide
registration review, the U.S. EPA follows a tiered risk
assessment process that applies more conservative aquatic
exposure modeling methods for estimating pesticide EDWCs at
the lower tiers and only applies more complex, refined
modeling approaches for those pesticides that have not passed
the risk assessment at the lower tiers. The Tier 1 modeling
approach (designed to be most conservative) uses EPA’s
FIRST model,! and because most pesticides fail this mitial tier,
a Tier 2 assessment is often required. In a Tier 2 assessment,
the EPA requires that a standard modeling approach utilizing
the Pesticide Root Zone Model (PRZM) field scale hydrologic
model® and the Exposure Analysis Modeling System (EXAMS)
receiving water model’ be followed when estimating pesticide
EDWCs for the puarpose of product registration. Refinements
including Percent Crop Area (PCA) adjustments to the
assumption of 100% cropping are within the Tier 2 guidance,
but other refinements are limited. Registrants have at times
submitted more complex modeling approaches that incorporate
site specific environmental conditions (e.g., soil and weather),
probabilistic methods (e.g, Monte Carlo simulation), speci-
alized models, spatial analysis of model input parameters, and
monitoring data as a Tier 3 and Tier 4 assessment to further
refine exposure predictions.' US EPA acceptance of Tier 3 and
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Tier 4 has been limited, so in practice, exposure modeling
beyond the screening level assessment provided in Tier 2 is
rarely conducted, making the Tier 2 modeling results the most
relevant for comparison with monitoring data.

The modeling results reported on in this stady were
generated using the Tier 2 modeling approaches that were
prescribed by the EPA at the time the studies were conducted.
The Tier 2 approach simulates daily concentrations of a
pesticide in an “Index Reservoir” over a 30-year period. The
Index Reservoir was characterized by the US EPA as being
“designed to mimic drinking water reservoirs in the central
Midwest known to be highly vulnerable to contamination from
pesticides used in agriculture”.’ This Index Reservoir and its
associated watershed is based on the Shipman Reservoir in
Iinois. The Shipman Reservoir covers approximately 5.3 ha,
has a mean depth of 2.7 m, and has a watershed that drains
approximately 172.8 ha. These geometric characteristics result
in a drainage area to normal capacity ratio (DA/NC) of 12,
which is higher than approximately 90% of drinking water
reservoirs.” Because higher DA/NC ratios lead to higher
pesticide exposure vulnerability, the geometric characteristics of
the Index Reservoir place it on the high end (90th percentile)
of vulnerability.

The use of Shipman Reservoir to represent the Index
Reservoir scenario for estimating EDWCs was designed to be
conservative; therefore, the predicted pesticide concentrations
are expected to be higher than would be found in most drinking
water reservoirs.” Another important input assumption when
applying the Index Reservoir scenario to calculate EDWCs is
the percent cropped area (PCA) adjustment factor. A PCA
adjustment factor is necessary because, for watersheds greater
than a few hectares in size, the percentage of the watershed
being cropped will be less than 100%. The PCA is a critical
input assumption to the Index Reservoir modeling approach
because it dictates the fraction of the reservoir watershed that
will be treated with the pesticide under evaluation. The US EPA
has recently developed updated guidance on how PCA
adjustment factors should be determined for major crop and
crop groups for both national and regional assessments.” This
guidance provides recommendations of national and regional
PCA values for major crops, for combinations of major crops,
and for all agriculture, as well as a prescribed methodology for
choosing the appropriate PCA value for a given pesticide use
pattern scenario. While this recent guidance supersedes the
approaches to PCA calculation that were effective at the time
when several of the modeling studies in this report were
conducted, the differences in PCA values between current and
past guidance are small relative to the magnitude of the
modeled versus monitoring data concentrations. Furthermore,
the recommended PCA values in the most recent guidance are
generally higher than the previously guidance, making the
current model predictions more conservative than past
analogous predictions. The national maximum PCAs for the
major crops that were recommended for use during the period
between 2000 and 2012° and the current post-2012 guidance
are shown in Table 1.

The only legal constraints on pesticide use are the conditions
for use placed on a product label. These conditions (for
agricultural products, the application rates and timing on
specific crops) are what EPA uses as a basis for modeling
exposure, focusing on what could occur as opposed to what
actually occurs or is likely to occur. Following the EPA
modeling approach, the PCA and subsequently the fraction of
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Table 1. Comparison of National Percent Cropped Area
(PCA) Adjustment Factors for Major Crops from US EPA
Guidance during 2000—2012 and Updated Guidance for
2012—Present

max percent cropped area  max percent cropped area

crop (2000—2012) (2012 —current}
corn 0.46 0.61
soybeans 041 0.57
wheat 0.56 0.38
cotton 0.2 0.33
all agricultural 0.87 091
land

the watershed treated with pesticide are constant for all
pesticides that are labeled for use on a particular crop,
regardless of the relative market share of individual products or
the prevalence of actual use. Additionally, it is assumed that
application of the pesticide is made over the entire cropped area
in the watershed on the same day. The assumption that the
entire cropped area is treated on the same day is likely to be
more accurate for very small watersheds and low acreage crops
consisting of a few fields under the management of few farmers,
but it quickly becomes less realistic as the watershed size
increases or for high acreage crops (due to farmer equipment
constraints or pest and weed management strategies).
Misrepresentation of actual product use spatially and
temporally can have a significant impact on EDWCs. In order
for models to successfully predict pesticide concentrations that
can realistically be expected to occur under high vulnerability
conditions, the product use assumptions must reflect reality. A
comparison of modeling results with monitoring data will give
an indication of model performance but also how well
assumptions used for input values reflect actual conditions.

Comparing Modeling to Monitoring Data. Making
comparisons of water quality modeling results and monitoring
data is a common activity used in model calibration and
validation. Often times, these comparisons are not straightfor-
ward due to monitoring frequency and sampling methods
relative to the modeling data.

One common comparison approach is to perform time series
analysis where monitoring data and modeling results are
evaluated over specific time periods (typically daily) where the
two co-occur. A time series analysis can also occur based on
longer duration time steps (monthly or annually) where both
the monitoring and modeling data are aggregated over the
duration being assessed. Obtaining an accurate assessment of
model performance from time series analysis can be challenging
in pesticide simulation modeling due to the uncertainties in
pesticide application timing and subsequent transport to
receiving waters. These uncertainties make the quantification
of differences between model and monitoring data difficult,
because the time series goodness of fit statistics are very
sensitive to small timing errors in the model. The difficulty in
applying time series comparison methods is even more difficult
in situations where the number of monitoring samples is small
compared to the number of model predictions. In situations
where pesticide application timing is very well understood and
monitoring data is more abundant, a time series analysis can be
a meaningful approach for assessing the performance of
pesticide concentration simulations. Another approach for
comparing modeling and monitoring data is to perform
statistical comparisons of the probability distributions of the
two data sets. This type of approach places less emphasis on
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assessing the model’s ability to match temporal signals in the
monitoring data and, instead, looks to assess the model’s ability
to predict concentration magnitude and frequency. This
approach is particularly appropriate for pesticides where the
specific temporal use patterns are often highly uncertain and
where the monitoring data may not be able to capture the
details of day to day temporal variability.

‘When making comparisons between modeling and monitor-
ing data, the uncertainties inherent in both need to be
considered. Uncertainties in modeling arise from the
identification of model parameters, measured model inputs,
and the underlying conceptual model and model structure.
Uncertainties in model parameters have long been recognized
in pesticide exposure modeling, and parameter space sampling
techniques, such as Monte Carlo Analysis, Latin Hypercube
Sampling, and Deterministic Equivalent Modeling Method
(DEMM), have been used to address them.”™"* Unfortunately,
techniques such as Monte Carlo analysis often do not include
errors and uncertainties in model inputs, such as weather and
pesticide application timing, which can often be as or more
important as many model parameters included in a probabilistic
approach. Often times, model uncertainty is reduced by the
refinement of model parameters accomplished through
calibration with monitoring data.

Uncertainty in monitoring data used to calibrate and validate
hydrologic and water quality models is also well acknowledged,
and can lead to poor identification of model parameters. Efforts
to quantify this uncertainty and development of tools to aid in
the comparison of monitoring data with model data have been
developed'>'* and may be used to improve model calibration.
Techniques for quantification of uncertainties associated with a
conceptual model and model structure are not commonly
applied to water quality models with a static form used in
pesticide exposure modeling; however, the existence of these
uncertainties should be acknowledged.

One of the greatest sources of uncertainty associated with
monitoring data is the potential bias in the monitoring data
resulting from low sampling frequency. Arguments can be made
that infrequent sampling at regular intervals in a monitoring
program can sometimes miss the peaks in concentration which
are important in the determination of EDWCs for use in risk
assessments. While this argument cannot be disputed, the
question of the sampling frequency required to enable accurate
prediction of the “true” distribution in concentration levels
remains a topic of interest and continued investigation.
Crawford"® evaluated the sampling frequency required to
accurately predict various exceedance probabilities of annual
maximum concentrations. Crawford found that required
sampling frequency was dependent upon watershed size and
the exceedance probability being detected. For example, the
median annual concentration in water bodies draining lager
watersheds (e.g, 16,400 km®) can be estimated sufficiently by
sampling 7 times per year. For the 95th percentile annual
concentrations (5% exceedance probability) on smaller water-
sheds (90-250 km?®), a sampling frequency of 10 times per
month during the runoff season following pesticide applications
was required. In addition, Mosquin et al.'® presented an
approach for estimating higher percentile (lower exceedance
probability) pesticide concentrations in surface drinking water
trom monitoring data sets of various frequencies. In addition,
they provided estimates of the number of samples required to
derive confidence bounds for the upper percentiles of
concentration distributions. For example, an effective sample
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size of 59—69 can provide the estimates for the 95th percentile
concentrations with sufficient statistical confidence (e.g,, 95%),
and increasing the sample size to 212 reduces the relative
standard error to 30% or below. Other recent work has sought
to quantify the potential bias in the estimates of higher
percentile pesticide concentrations based on nondaily monitor-
ing data.'”'® These studies have suggested that bias factors
(defined as the 95th percentile of the ratios of a true
concentration end point derived from daily monitoring data
to the corresponding estimate from nondaily sampling)
increase as monitoring frequency decreases and as the desired
averaging interval decreases in duration (i.e., the bias factor
increases if estimating maximum versus 14-day average). Chen
et al."® found an average bias factor of 2.4 when using 7-day
samplingq interval data to estimate an annual peak value, and
Hetrick™” found bias factors averaging 1.79 for estimating peaks
from 4-day sampling data or 8.35 when using 28-day sampling
data. The development of bias factors for estimating higher
percentile pesticide concentrations from monitoring data of
various sampling frequencies provides an important basis for
the comparisons between modeling results and monitoring data
obtained from nondaily sampling studies. While the develop-
ment of methods for using monitoring data in statistical
estimation of higher percentile pesticide concentrations will
continue, modeling tools will always be required when assessing
EDWCs for newly registered crop protection products.

The question of if and by how much pesticide EDWCs
derived from the standard regulatory modeling approach
overestimate actual pesticide concentrations in drinking water
has long been one of considerable interest. Several authors have
published comparisons of modeling and monitoring data within
the past ten years.'” > These studies (and others) have
determined that the regulatory modeling based EDWCs
consistently overpredict the concentrations of pesticides
found in surface drinking water monitoring data sets. As was
stated, the US EPA’s modeling approach is understandably
designed to be conservative; however, the magnitude of the gap
between modeled and observed pesticide concentrations in
surface drinking water should be fully understood so that the
modeling results can be applied more appropriately in the
context of better understood certainty/uncertainty of the
modeled estimates. This paper brings together a collection of
previously published comparisons between monitoring data and
regulatory modeling-based EDWCs, with the objective of
evaluating how accurately the regulatory modeling approach
being used by the U.S. EPA reflects what has been observed in
monitoring studies. In combining data from multiple past
studies, the analysis contained in this paper is based on the
most comprehensive set of data on the subject to date. A
secondary objective of this paper is to identify the possible
factors leading to the overprediction of EDWCs following the
current modeling approach and to propose alternative
assumptions and methods that produce results closer to
observed values of pesticide concentrations in surface drinking
water.

B MATCRIALS AND METHODRS

This comparison of modeling and monitoring data of pesticide
concentrations focused on modeled EDWCs derived from standard
US EPA Tier 2 regulatory modeling and monitoring data covering a
wide range of water body types (flowing and nonflowing) and sizes. A
preliminary literature review on the subjects of pesticide modeling and
monitoring identified 179 documents from peer reviewed journal
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articles, technical reports, conference proceedings and presentations,
and Web sites. This initial bibliography was then screened to identify
the studies that contained explicit comparisons between Tier 2
PRZM/EXAMS modeling results and monitoring data. This screening
resulted in seven studies from which the data for evaluation were
compiled. All the monitoring and modeling results reported in each of
the seven studies selected were designed to select either the maximum
or a higher percentile monitoring data concentration for comparison
with the modeled values (which were generally the 1 in 10 year annual
maximum values used in regulatory risk assessments). The discussion
that follows and footnotes to the individual data tables will provide the
information concerning each of the data sources and describe the
methodology for the modeling/monitoring data comparisons made in
this report.

Data Sources. The data sets, and descriptions of the source studies
they came from, are provided in this section. First was the paper by
Jones.” This study reported on four pesticides that were part of
targeted monitoring studies that sought to identify community
drinking water systems (CWS) that were in locations most valnerable
to potential exposure to each individual pesticide. The study included
between S and 28 CWS for each pesticide, with between 233 and 2120
samples of raw water and between 30 and 306 samples of finished
water (total samples per pesticide ranging from 263 to 2426). The
sampling associated with these studies lasted between 2 and 3 years
and included weekly or biweekly sampling frequency during and after
the application season. The study compared both daily maximum
concentrations and annual average concentrations. A summary of the
data compiled from this study is provided in Table 2. In Table 2, the

Table 2. Summary of Modeling and Monitoring Data from

_]ones17
highest
modeled max
conc’ monitoring EDWC tot
pesticide (pg/L) cone (pg/L) duration samples”
aldicarb” 17 0.68 acute (daily max) 2426
bromoxynil” 11 0.38 acute (daily max) 543
carbaryl® 745 0.16 acute (daily max) 2369
ethoprophos? 127 0.012 acute (daily max) 263
aldicarb” 5.8 0.07 chronic (annual 2426
avg)
bremexynﬂb 02 0.01 chronic {annual 543
avg)
carbaryl® 31 0.005 chronic (annnal 2369
avg)
ethoprophosd 13 <0.003 chronic (annual 263
avg)

“Includes 28 sites monitored for 3 years with weekly sampling during
application season. “Includes 16 sites monitored for 2 years with
biweekly sampling during application season. “Includes 20 sites
monitored for 3 years with weekly sampling during application
season. “Includes $ sites monitored for 3 years with weekly sampling
during application season. °Modeling conducted by EPA and
represents 90th percentile annual maximum; for bromoxynil, value
represents the average of annual maxima. TRaw water plus finished
water samples.

highest modeled concentrations represent the highest daily maximum
value based on 30-year simulations of all multiple crop scenarios
simulated for the pesticide shown. The highest monitoring
concentration represents the highest of finished water over the
duration of the study (2 to 3 years).

The second source of data by Jackson et al* examined 25 different
pesticides, making predictions of EDWCs following the standard EPA
PRZM/EXAMS regulatory modeling approach and comparing those
results with monitoring data collected in the study of water supply
reservoirs conducted by the US Geological Survey (USGS) and the US
EPA.* The USGS study monitored 12 reservoirs over a period of one
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to two years {1999—2000) extending geographically across 12 different
states, from California to New York . The reservoirs selected focused
on small reservoirs with high pesticide use, and were thus highly
vulnerable to elevated pesticide concentrations. A sampling strategy
was designed to be able to estimate higher percentile (90th, 95th, and
99th percentile) with high confidence. The strategy was derived from
an evaluation of a 2-year record of daily pesticide concentrations from
Perry Lake reservoir in Kansas, and PRZM/EXAMS simulations.
Three different sampling schemes were developed (11, 26, and 37
times per year), each of which focused samples during the pesticide
application season. One of the 12 reservoirs received the highest
sampling frequency (37 times per year), four reservoirs received the
middle frequency (26 times per year), and seven received the lower
frequency sampling, resulting in 537 to 551 samples per pesticide. In
addition to data from the 2-year reservoir monitoring study, Jackson et
al® also presented monitoring data from the USGS National Water
Quality Assessment (NAWQA) program as an additional data set for
comparison. The NAWQA data set analysis included a longer record
of water quality sampling (1992~2004) and a larger total number of
samples for each pesticide, ranging from 105 to 23,726. The NAWQA
sampling locations are not specifically targeted as sites having a high
vulnerability to pesticide exposure, but rather represent a cross section
of agricultural, developed, and mixed land use watersheds spread
geographically across the United States. Sampling for NAWQA is
generally conducted on a biweekly basis. One of the primary objectives
of the NAQWA program is to monitor trends in surface water quality.
A summary of the PRZM/EXAMS modeling and the monitoring
results from the USGS reservoir monitoring and the NAWQA
database analysis is provided in Table 3. The highest modeling
concentration reported is the highest 90th percentile annual maximum
concentration (from the 30-year PRZM/EXAMS simulations)
simnlated from one or more crop scenarios. The 90th percentile
annual maximum concentrations are calculated by first determining the
maximum concentration in each simulation year and then ranking
those annual maximum concentrations and calculating the 90th
percentile of those values. The data presented for the reservoir
monitoring program represents the maximum concentration detected,
while the data from the NAWQA program is the 95th percentile of the
collection of samples. Although these two monitoring data sets are not
equivalent, the additional NAWQA data provide a valuable
comparison with both the modeled concentrations and the reservoir
data.

A conference presentation by Hertl et al>' also compared modeling
results following the EPA PRZM/EXAMS regulatory modeling
approach with monitoring data from the USGS reservoir monitoring
program.'? This study evaluated several pesticides in addition to the
Jackson et al.”® study and also looked at both acute (short-term) and
chronic (long—term) concentrations. The acute concentrations were
represented by the maximum individual sample values, and the chronic
concentrations were calculated as the 95th percentile of the time
weighted annual average. In addition, the monitoring data evaluated in
the Hertl et al>' study represented only the raw water samples,
whereas the Jackson et al. paper included finished water as well, with a
total number of samples per pesticide ranging from 312 to 323. For
the vast majority of the pesticides analyzed, the raw water samples had
higher concentrations than the finished water samples (highlighting
another area of conservatism in the regulatory approach). These data
are summarized in Table 4.

The most recent report reviewed that compared monitoring data to
regulatory model simulation results was prepared by the US EPA
The purpose of this report was to present an updated methodology for
selecting appropriate PCA adjustment factors based on analysis of the
most recent land use and cropping data sets. In addition to presenting
the updated methodology, the report also showed monitoring data
comparisons of the regulatory modeling simulations using the new
PCA adjustment factors. In addition, the report included monitoring
data from multiple sources (some were the same as those used in the
earlier studies described) compiled over the past 20 years. These
monitoring data sets included the following: USGS monitoring data
from community water systems presented in Concentration Data for
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Table 3. Summary of Modeling and Monitoring Data from Jackson et al.'’

highest modeled

pesticide cane” {ug/L) monitoring conc (ug/L)7¢

24-D 145 0.634
2,4-DB 140 0.054
acifluorfen 134 0.062
adicarb 98.7 0.082¢
atrazine(H) 438 11.6
benomyl 9.34 0.215
bentazon 32.5 0.344
bromoxynil 88.3 0.057
clopyralid 15.8 0.17
dicamba 328 0.192
flametsulam 225 0.088
imazaquin 3.09 0.351
imazethapyr 3.06 0.133
linuron 35 0.035
MCPA 81 0.121
metalaxyl 101 0.351
methomyl 163 0.0777
nicosulfaron 192 0.139
norflurazon 215 0414
oryzalin 161 0.127
picloram(H) 527 1.441
propiconazole 125 0.064
sulfometuron- 1.87 0.16

methyl
tebuthiuron 1350 0.077
terbacil 125 0.1

USGS reservolr program, max

tot USGS NAWQA program, 95th percentile no. of NAWOA
samples monitoring conc (ug/L)7 samples
537 0.362 7,129
537 <024 5,938
537 <0.035 6,014
537 <0.55 5,980
551 14 23,726
537 0.024 1,182
537 0.1 6,488
537 <0.035 5,877
537 <023 5,976
537 <0.035 6,043
537 <0.11 1,084
537 0.058 1,214
537 0.028 1,128
537 <0.08 259
537 <0.07 6,218
538 0.04 656
537 <0.017 105
537 <0.013 1,089
537 <0.042 6,101
537 <031 6,056
537 <005 5,763
537 <0.021 1112
537 0.025 1,165
537 0.049 14,133
537 <0.034 10,223

“Modeled values represent 90th percentile of annual maxima. “Data presented in Jackson et al. (2005) was graphical. Specific values reported were
extracted directly from Bloomquist et al. (2001). “Includes 12 sites monitored for 1 to 2 years with 11 to 37 samples per year, focused during

application season (up to every 3 days for 1 month). “No detections occarred in sampling, Value represents detection limit. “Values preceded by “<

w _»

were below the level of quantification for the analytical method. Raw water plus finished water samples.

Anthropogenic Organic Compounds in Ground Water, Surface Water, and
Finished Water of Selected Community Water Systems in the United
States, 2002—-08 (http://pubs.usgs.gov/ds/2007/268/); USGS
NAWQA surface water data (http:// infotrek.er.usgs.gov/nawqa_
queries/); the USDA’s Pesticide Data Program (PDP); the California
Department of Pesticide Regulation’s Surface Water database (http: //
www.cdpr.ca.gov/docs/emon/surfwtr/ surfdata.htm); and data ob-
tained from crop-specific monitoring studies submitted to EPA. The
comparisons in Echeverria et al’ represent the most current
implementation of EPA’s regulatory modeling approach as well as
the most comprehensive compilation of monitoring data comparison.
These data comparisons from the EPA report are summarized in Table
S. The highest modeling concentration shown represents the 1 in 10
year peak, or 90th percentile annual maximum concentration (see
footnote earlier in this section). The total number of samples per
pesticide was not provided in the EPA report; however, given that
NAWQA was one of the sources, the number of samples likely well
exceeded 1000 for many of the pesticides.

The four studies presented thus far accounted for the majority of
the modeling results monitoring data comparisons. Three other
studies provided additional comparisons of regulatory modeling results
with monitoring data. The first study focused on the fungicide
vinclozolin and its use on golf courses.”” In this study, 10 CWS
watersheds with high numbers of golf courses were monitored for over
a two year period for vinclozolin. The second study assessed the
herbicide oxadiazon, which is also used on turf.?® In this study, three
community water systems were monitored for a period of three years.
The third study was an analysis of fungicide iprodione use on turf and
included its degradate product, 3,5-DCA** This study compared
monitoring data of finished water collected over three years from three
different CWS with regulatory modeling predictions. The modeling
and monitoring data from these three studies, including the total
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number of monitoring samples (ranging from 480 to 639), are
presented in Table 6.

Data Compilation and Analysis. The modeling/monitoring data
comparison from the seven studies presented in Tables 2—6 were
combined for an assessment of the modeled data overprediction in
surface water EDWCs. For the Jackson et al® study, only the
monitoring data from the USGS reservoir study was included for the
combined comparison. This was done because, for all pesticides, the
monitoring data from the USGS reservoir monitoring found greater
concentrations than the 95th percentile data from the NAWQA
analysis. There were a total of 85 modeling/monitoring data points for
evaluation. These 85 data points included 68 acute and 17 chronic
EDWC concentrations spread over 52 different pesticides {52 acute
and 1§ chronic). The overprediction in the modeled concentration
was calculated as the ratio of modeled concentration to monitored
concentration. The results of this analysis follow.

B RESULTS AND DHSCUSSION

Analysis of Modeling and Monitoring Data Compar-
isons. All monitoring and modeling data comparisons from the
seven studies compiled are shown in Figure la. The 85 data
points are sorted from highest modeled concentration to lowest
modeled concentration. Figure 1b shows only the 25 data
points with the lowest modeled concentrations. The modeled
concentrations ranged from a high value of 1350 pg/L (for
tebuthiuron acute concentration) to a low value of 0.2 pg/L
(for bromoxynil chronic concentration). The median modeled
concentration was 32.5 pg/L (for bentazon, acute concen-
tration), which had an associated monitoring concentration 2
orders of magnitude lower at 0.344 ug/L. In total, 96.5% of the
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Table 4. Summary of Modeling and Monitoring Data from

Hertl et al.”®
max
monitoring
highest modeled conch 7 EDWC tot
pesticide conc? {(ug/L) (ug/L) duration samples”
acifluorfen 14.03 0062  acute (daily 312
max)
aldicarb 174 0082  acute (daily 312
max)
atrazine 205.1 11.6 acate (daily 323
max)
azinphos- 87.8 0.144  acute (daily 323
methyl max)
carbaryl 274 0.063  acute (daily 323
max)
disalfoton 26.8 0.021 acute (daily 323
max)
fenamiphos 651 0016  acute (daily 317
max)
metolachlor 134.6 332 acate (daily 323
max)
triallate 7.76 0002  acute (daily 323
max)
tribuphos 14 0016  acute (daily 317
max)
acifluorfen 2.97 0.062 chronic 312
(annual avg)
aldicarb 5.8 0.082 chronic 312
(annual avg)
atrazine 194.2 2.016 chronic 323
(annual avg)
azinphos- 7.2 0.018 chronic 323
methyl (annual avg)
carbaryl 79 0.063 chronic 323
(annual avg)
disulfoton 1.1 0.017 chronic 323
(annual avg)
fenamiphos 329 0.016 chronic 317
(annual avg)
metolachlor 77.9 0417 chronic 323
(annual avg)
triallate 0.88 0.001 chronic 323
(annual avg)
tribuphos 2 0.016 chronic 317
(annual avg)

“Modeling conducted by EPA and Represents 90th percentile annual
maximum. “For nondetections, where the 95th percentile could not be
determined {chronic), the detection limit was used. “Includes 12 sites
monitored for 1 to 2 years with 11 to 37 samples per year, focused
during application season {up to every 3 days for 1 month). “Acute
represents the maximum detected, and chronic represents the 95th
percentile of the time-weighted average. “Raw water samples.

modeled concentrations were greater than 1 pug/L, while the
monitoring data values were greater than 1 pg/L only 10.6% of
the time. In all 85 comparisons, the monitoring data were lower
than the modeling data.

The magnitude of the overprediction by the modeling results
was quantified by calculating the ratio of the modeling
concentration to the monitoring concentration. These ratios
are plotted from low to high in Figure 2 using percentiles
calculated from the Weibull plotting position. In addition, the
85 data points were split into acute and chronic comparisons.
Based on the population of all 85 data points, the range in
overprediction is from 1.5 to 85,041, with the median
overprediction greater than 2 orders of magnitude (229X).
More than 90% of the comparisons had a model overprediction
of greater than 1 order of magnitude (10X). For one-third of all
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Table 5. Summary of Modeling and Monitoring Data from
Echeverria et al.’

highest
modeled max monit

pesticide cone? (ug/1) conc” (ug/) EDWC duration
acetochlor 50.1 477 acute (daily max)
acifluoren 49.5 0.011 acate {daily max)
atrazine 130.3 85 acute (daily max)
bentazon 117 0.12 acute (daily max)
bromacil 627 0.0927 acate (daily max)
bromoxynil 2 0.0046 acute {daily max)
carbofuran 252 0.0141 acute (daily max)
chlorthalonil 3285 0.71 acute (daily max)
chlorthalonil 759 0.71 acute (daily max)
cycloate 444 0.6 acate (daily max)
cypermethrin 19 0.246 acute {daily max)
depa 4167 0.0049 acate (daily max)
diazinon 135.8 0.0855 acute (daily max)
dicrotovos 16.6 6.83 acate {daily max)
fipronil 0.5 0.0375 acate (daily max)
fluometuron 29.7 0.0065 acute (daily max)
imazaquin 11 0.16 acute (daily max)
iprodione 16322 0.018 acute {daily max)
linuron 17.7 5.28 acate {daily max)
mepa 153 047 acate (daily max)
oryzalin 61.1 0.065 acate {daily max)
phosmet 26 0.074 acate (daily max)
picloram 8.6 0.17 acute {daily max)
triallate 33 0.65 acate {daily max)
triclopyr 516.6 045 acate (daily max)

“Modeled values represent 90th percentile of annual maxima. bvalue
represents maxima from multiple sources over many sites and many
years. Refer to source report for details. “T'otal number of samples was
not reported in source.

Table 6. Summary of Modeling and Monitorin§ Data from
Jackson et al.,”' Nandihalli et al,'® and Jones”

highest
modeled  max monit
conc cone EDWC tot

pesticide” (ug/L) (pe/L) duration samples”
3,5-DCAY 153 <0.032 acute (daily max) 587
iprodione” 361 0.6 acute (daily max) 587
oxadiazon” 52 0.175 acute (daily max) 639
vinclozolin® 84.3 0.025 acute (daily max) 480
3,5-DCA? 36 <0.025 chronic (annual avg) 587
iprodione” 1.6 0.037 chronic (annual avg) 587
oxadiazon® 18.6 0.025 chronic (annual avg) 639

“Vindozolin data from Jackson et al. (2010); oxadiazon data from
Nandihalli et al. (2010); iprodione and 3,5-DCA data from Jones
(2012). “Includes 3 sites monitored for 3 years with weekly/biweekly
sampling. “Includes 10 sites monitored for 3 years with biweekly
sampling for first 6 months, then monthly. “Modeled values represent
90th percentile of annual maxima. “Raw water plus finished water
samples.

comparisons, the overprediction by the modeling results was
greater than 1000X. When comparing the distribution of model
overprediction for acute versus chronic EDWCs, the distribu-
tions are very similar between from the 30th through 90th
percentiles. Below the 30th percentile, the chronic EDWC
overpredictions are somewhat higher than the acute over-
predictions. The smallest overprediction in the chronic EDWCs
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Figore 1. (a) Comparison of modeled and monitoring data concentrations for all pesticides, all data points. (b) Comparison of modeled and
monitoring data concentrations for all pesticides, low concentration data points.

was 20X while the smallest acute overprediction was 1.16X.
This suggests that, even as the regulatory modeling approach
results in peak concentrations that are too high, the persistence
of elevated concentrations that it predicts can lead to more
significant overprediction of longer duration concentrations.
This persistence of high concentrations may be in part due to
the underestimation of inflows and outflows associated with the
index reservoir assurptions.

The overprediction ratios by pesticide for the acute EDWC
comparisons are shown in Figure 3. The average (arithmetic
mean) was calculated for those pesticides (e.g., atrazine) where
multiple comparisons of modeling and monitoring data were
available. In the figure, (I) indicates an insecticide, (H)
indicates a herbicide, (F) indicates a fungicide, (F,D) indicates
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a fungicide degradate, and (N) represents a nematocide. Based
on the data in Figure 3, there are a few trends to note. First,
three of the pesticides in the top ten highest overprediction
ratios were fungicides or associated degradates, while no
fungicides occurred among the lowest ten ratios. In addition,
two of the pesticides in the top ten lowest overprediction ratios
(acetochlor and atrazine) are among the top S5 highest use
pesticides in the US in 2007.° Of the ten pesticides with the
highest overprediction ratios shown in Figure 3, none of them
were among the 25 pesticides with the highest use in the US in
2007. While the data available concerning actual pesticides use
associated with each modeling/monitoring data comparison are
limited at best, the comparison trend demonstrates a
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Figure 3. Top 10 and bottom 10 acute overprediction ratios of EDWCs by pesticide.

correlation between lower use pesticides and higher over-
prediction ratios.

Factors Affecting Model Comparisons with Monitor-
ing Data. It must be acknowledged that the comparisons
between the modeled EDWCs and monitoring data are not,
and cannot be, absolutely equivalent comparisons, as the
regulatory modeling was not conducted on a site-specific basis
under monitoring watershed conditions (e.g., specific weather
or soil characteristics). They were run under the generic Index
Reservoir standard setting. One aspect of the monitoring data
sets that is different than the modeling data is the sampling
interval. The modeling data EDWCs are based on daily
predictions, whereas the monitoring data sets are based on
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different prescribed sampling intervals. As has been discussed,
the data sets cited in this paper all had annual sampling
frequency in the range of once every 3-days to biweekly
samples during the high runoff season. Although these nondaily
sampling frequencies might have missed the true maximum
concentration in a particular year, the annual mean (chronic
end point) and/or the 90th percentiles (acute) concentrations
over the many sites and years (up to 20 years) should provide
sutficient statistical power for estimating these end points based
on Crawford"® and Mosquin et al.'® Recall that Crawford'®
found that seven samples per year was sufficient to estimate
median annual concentrations for larger watersheds, and 95th
percentile annual maximum concentrations could be con-
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fidently estimated with ten samples per month (every three
days) daring the runoff season. The sampling frequency in the
monitoring studies contained in this report all exceeded the
frequency required for estimates of annual mean concentrations
(chronic), and several met or approached the frequency
required to estimate the 95th percentile annual concentration
(a level requiring more frequent sampling than the standard
90th percentile annual acute concentration). In addition,
research concerning the bias factors between the true peak
concentrations and peak concentrations'”'® inferred from a
nondaily sampling scheme indicated a weekly based sampling
scheme could likely underestimate peak concentrations by a
factor of 2.4 on average, whereas a 28-day sampling scheme
could underestimate peak concentrations by a factor of 8.35 on
average. The monitoring programs evaluated in the compar-
isons contained in this study included targeted monitoring
(designed to sample high vulnerability sites), with weekly or
sometimes more frequent sampling (sampling information is
provided as footnotes associated with each data table and earlier
in the text). A monitoring bias factor of around 3x is very small
compared to the median model overprediction of 280x
reported in the studies evaluated here.

A second aspect of the modeling data that differs from the
monitoring data is the length of the model simulation
compared to the monitoring sampling period. Model
simulations for Tier 2 regulatory modeling are run for 30
years in order to account for climate variability. Although some
of the monitoring data sets included in this study included
longer periods of record (>10 years), such as some sources
included in Echeverria et al,” many were based on durations of
two to three years.'”™>" If these monitoring studies were each
considering only a single site, one might conclude that the
shorter duration of the monitoring data would be expected to
show potentially lower peak pesticide concentrations compared
to a model simulation representative of a 30-year weather time
series (with greater extremes). In the case of the studies
presented in this report, this conclusion would not be valid,
because all of the studies evaluated multiple sites throughout
the monitoring period, effectively multiplying the number of
sample years by the number of sites. For example, in the Jones
study,"” individual pesticide monitoring ranged from five sites
for three years (15 effective site-years) to 28 sites for three
years (56 effective site-years). The USGS targeted reservoir
monitoring program,” which was used in model comparisons
in several studies,”®>" intensively monitored 12 sites for two
years (24 effective site-years). By including multiple sites
monitoring for the same pesticide, the potential for a low bias
in the monitoring data due to having less climate variability
than a 30-year modeling period is likely to be low. This can also
be supported by the statistical work of Crawford"® and
Mosquin et al,'® who have shown that nondaily sampling
data sets over many sites and years (up to 20 years in our cited
data) should provide sufficient statistical power for estimating
the annual mean (chronic end point) and/or the 90th (acute)
concentrations. Recall that Mosquin et al.'® found that an
effective sample size of 212 is sufficient to estimate the 95th
percentile concentrations with a relative error of 30% or less for
a target population of monitoring. As can be seen in reviewing
Tables 2—6, the total number of samples per pesticide used to
compare with model results ranged from a minimum of 263
samples for ethoprophos (Table 2) to 23,736 samples in the
case of the NAWQA atrazine data (Table 3), with most
pesticides having greater than 500 samples. These findings
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suggest that the sample sizes in the monitoring data sets
evaluated in this study are large enough to allow meaningful
estimation of both chronic (annual mean) and acute (90th
percentile) concentrations.

Framework for More Accurate Modeling of Drinking
Water Exposures. This study included comparisons of
modeling results generated by using standard EPA regulatory
practices with monitoring data dating back to 2002,
continuing up through a comprehensive assessment compiled
by the US EPA using that latest parametrization methodology.”
Each of these studies concludes that, to varying degrees, the
regulatory modeling approach overpredicts drinking water
EDWCs. While overprediction by the modeling approach is
consistent with the regulatory objective of protecting human
health, the degree of overprediction identified in this study
(median of nearly 280X) suggests that for most pesticides the
current modeling approach may have unrealistically predicted a
higher potential health risk than actually exists. Evaluation of
the current modeling approach is thus warranted, including a
critical review of the inputs and assumptions in the current
approach that are responsible for the significant overprediction
of EDWCs.

Many of the assumptions leading to the large overpredictions
have been identified by the authors of previous publications on
the subject. Hertl et al.*' mention several factors leading to the
overprediction, foremost among them being the overrepresen-
tation of pesticide use in the Index Reservoir watershed. Even
though a PCA adjustment factor is applied to lower the
effective fraction of the Index Reservoir watershed receiving
pesticide application, this PCA is based on a conservative
estimate of crop extent and does not take into consideration
information on actual pesticide use. The assumption that 100%
of a given crop is applied across the whole watershed with the
same pesticide under consideration at the maximum labeled
rate (as is the assumption in regulatory modeling) is never true
in reality, and for many pesticides with small market share, it is
a gross overestimate of actual use. Hertl et al*' goes on to
mention issues associated with the appropriateness of the
PRZM/EXAMS model scale compared to the scale it is being
used to simulate. PRZM is a single field model which is being
used to simulate the hydrochemical behavior of a heteroge-
neous watershed. The PRZM model cannot account for
watershed scale attenuation and the effects of interaction
between adjacent landscape units (such as vegetated and/or
riparian buffers) which have been shown to significantly reduce
off-field transport of pesticides.”” Furthermore, the issue of
scale is a key factor in the assumptions of pesticide spray drift
contributions to EDWCs in the index reservoir modeling
scenario, which assumes that all treated fields are adjacent to
water bodies contributing to the reservoir and that those water
bodies are always downwind of the field treated with pesticide;
an assumption that is physically an impossibility. Other factors
contributing to the regulatory modeling overprediction include
the compounding of conservative assumptions such as the
following: selection of only a single representative but runoff
vulnerable soil and the interpretation of product labels
assuming the maximum rates at the minimum intervals to all
fields within a watershed on the same day. The chemical
specific environmental fate parameters chosen as inputs to the
models are selected with each parameter individually
representing the upper 90th of sample values for that
parameter’s data set. Collectively, however, combining these
parameter values creates a vulnerability scenario much higher
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than the 90th. Other authors'”*® have identified similar factors
contributing to regulatory model overprediction, with Jackson
et al*® proposing a correction factor based on the total
pesticide applied in the model simulation.

The authors of this paper support the suggestions by
previous authors on the subject regarding the causes for
overprediction in the regulatory modeling approach that are
most responsible for model overprediction. There are several
other factors that deserve mentioning and reinforcement. First,
as stated in the Introduction, the Index Reservoir scenario is
based on CWS with a very low drainage area to normal capacity
ratio (DA/NC), and according to the EPAS 90% of surface
drinking water reservoirs will have higher DA/NC ratios. This
issue of CWS watershed characteristics becomes even more
relevant in the context of drinking water supplies located along
flowing water bodies, where the characteristics of pesticide
concentrations are very different than static water supply
reservoirs. The use of a high vulnerability static water body to
represent pesticide exposure potential in a broad range of both
static and flowing water bodies does not capture the variability
in these types of drinking water supplies. Second, while the
overrepresentation of pesticide use has already been discussed,
another related problem is the implicit assumption that all fields
in a watershed receive the pesticide application at the same
time. This assumption is inappropriate for even the smallest
sized watersheds that can support an adequate drinking water
supply (such as the 172.8 ha Shipman Reservoir) and has
greater invalidity as the size of the CWS watershed increases
and the variability of agronomic practices of multiple farms
contributes to a broad range in pesticide application dates.
Accounting for the variability in application timing when
modeling pesticide fate and transport at the watershed scale has
been shown to have a significant effect on predicted
concentrations in flowing water bodies.”*® We have discussed
the many factors that are contributing to the unrealistically high
estimates of drinking water concentrations of pesticides using
the carrent regulatory modeling approach. Refined approaches
to applying the current Tier 2 models, as well as methods for
applying alternative models, already exist and have shown
promise in their ability to accurately predict pesticide residues
in surface water.

These alternative modeling approaches include both newly
developed tools as well as models with a longer history. The US
EPA is currently working on developing updated modelin
tools, such as the Surface Water Calculator (Young, 2013)°
and the Spatial Aquatic Model,*" that may be able to address
some of the shortcomings of the current modeling approach.
The Surface Water Calculator (SWC) is expected to include a
replacement to the EXAMS receiving water mode] called the
Variable Volume Water Model (VVWM) which will allow for
simulation of dynamic water volumes and a wider range in
hydrologic conditions. The Spatial Aquatic Model (SAM) is
being designed to simulate both static and flowing water bodies
draining a watershed with heterogeneous land use and soils. In
addition to US EPA efforts to improve the accepted regulatory
modeling tools, several other models reported in the scientific
literature have been shown to perform well at the prediction of
pesticides in complex watersheds that are typical of surface
drinking water systems. The United States Geological Survey
Watershed Regressions for Pesticides (WARP) model® was
designed to predict annual atrazine concentration percentiles in
flowing water bodies across the US. The WARP model was
shown by both Jones' and Jackson et al.** to predict pesticide

CBD v. EPA (1:21-cv-00681-CJN)

357

concentrations closer to monitoring data than the standard
Index Reservoir modeling method. The WARP model was
originally developed based on a statistical analysis of atrazine
monitoring data and has since been adopted for use with other
pesticides through incorporation of a surface water mobility
index.*® The strength of the WARP model is that it was built on
robust monitoring data sets; however, because it is mnot
physically based, it is unable to provide important functions
such as the simulation of alternative Best Management
Practices. This model also has limited testing on pesticides
for target crops with a smaller geographic extent than corn.
Promising opportunities for developing a modeling approach
that addresses the shortcomings in the current regulatory
modeling method reside in the application of exiting watershed
scale models that have a proven ability to accurately represent
the hydrochemical processes that are necessary for pesticide
fate and transport prediction. These tools could easily work
into the current regulatory process as a higher tier refinement
and could be utilized to simulate either additional representa-
tive scenarios or individual drinking water—watersheds of
specific concern. One of the most widely used watershed scale
models is the Soil and Water Assessment Tool (SWAT)
developed and maintained by the United States Department of
Agriculture.®* SWAT is a watershed-scale, continuous, physi-
cally based, semidistributed model that has been used in a
broad range of hydrologic and water quality applications.*® One
of SWAT’s strengths is its ability to simulate the water quality
impact of alternative management practices, including tillage
practices, buffers and grassed waterways, and pesticide
application practices. The use of the SWAT model in the
simulation of pesticide transport at the watershed scale has
been reported in the literature since at least 2005, and SWAT
was recently selected from a pool of 36 models as one of the
most appropriate for watershed-scale simulation of pesticides.*®
Pesticide transport modeling with SWAT has included
assessments of pesticides in both static and flowing water
bodies. Winchell et al.”® and Peranginangin et al.”’ developed
and evaluated a SWAT modeling methodology which focused
on identifying a parametrization approach that takes advantage
of intelligent use of data in place of extensive site-specific
calibration for use in aquatic pesticide concentration
predictions in complex watersheds. Another watershed-scale
modeling approach based on the PRZM model is the PRZM-
Hybrid modeling method described by Snyder et al.*® and in
reports by Miller and colleagues.”®” The PRZM-Hybrid
approach utilizes spatially explicit high-resolution NEXRAD
radar rainfall data, additional meteorology data, field-scale soil
properties from the US national SSURGO database, and
spatially explicit land use data as input data to model daily
watershed runoff concentrations. Both the SWAT and PRZM-
Hybrid models are designed for simulation of complex, spatially
heterogeneous watersheds and could be readily adapted to
serve the purposes of modeling EDWCs for the purposes of
human exposure risk assessments. In order for either of these
models to generate accurate pesticide concentration predictions
when compared to monitoring data, a good understanding of
pesticide use information needs to be incorporated. If used in a
regulatory context, the models have the ability to represent
more complex and realistic hydrology, soil, weather, and
application technologies than is possible with the models
currently used by EPA. USEPA scientists and pesticide
registrants have evaluated the use of watershed modeling
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approaches in the past,"® and because many of the tools have
matured, a similar effort should be explored again.

Regardless of the model platform, achieving more realistic
model predictions of EDWCs will require incorporating
accurate assumptions on pesticide use intensity (i, pounds
of pesticide per acre of watershed) into the regulatory modeling
tramework. The current assumption that any pesticide
evaluated is applied to 100% of the maximum possible extent
defined by its label is overly conservative for even the most
widely used pesticides. This implausible assumption is the
driving factor leading to the common occurrence of 3 to §
orders of magnitude model overpredictions of EDWCs that
were shown in Figure 2. Strong evidence to support the
incorporation of realistic pesticide use assumptions in water-
shed scale modeling is found in recent studies where WARP
(which explicitly accounts for pesticide use intensity) was
shown to much more closely match monitoring data than the
current regulatory modeling approach.'”** Information and
techniques similar to those used by the USGS in their recently
released national pesticide use maps'' could serve as the
toundation for more realistic use estimates but may require
additional scale adjustments to be representative of small
watersheds.

The data compiled in this paper represents the most
complete collection to date of pesticide modeling and
monitoring data. The accuracy of the concentration predictions
made by the current regulatory modeling approach was shown
to be poor, with significant overprediction common. Some of
the primary reasons for this overprediction were discussed,
including the regulatory modeling assumptions of pesticide use,
a lack of application timing variability, reservoir and watershed
geometry, and missing spatial heterogeneity of the watershed.
In order for many of these shortcomings to be addressed, a
watershed scale modeling approach will need to be adopted and
databases of more accurate pesticide use information will need
to be compiled. Several existing watershed modeling
approaches were proposed, each of which has already shown
promise in predicting pesticide concentrations in watersheds of
similar size and complesity to typical CWS watersheds. A
suggested next step is to take a closer look at several of the
watershed scale models introduced in this discussion and
determine which ones best fit the needs of regulatory modeling
and result in more accurate predictions of EDWCs.
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